极速快3_极速快3平台_极速快3网投平台

NVIDIA黄仁勋的生意经:全世界最大GPU DGX 2售价39.9万美元

时间:2020-01-02 17:56:26 出处:极速快3_极速快3平台_极速快3网投平台

北京时间3月28日夜晚00:00,英伟达GTC 2018(GPU Technology Conference 2018,以下简称GTC)在美国圣何塞举行。

英伟达再一次在提升计算力的路上越走越远。

英伟达创始人兼CEO黄仁勋

新产品—全世界最大的GPU假如有一天399

GPU产品依然是主旋律,Tesla V1000系列、DGX系列和Quadro GPU系列都进行了更新。

全新Tesla V1000显存将从有几个的16GB提升至32GB。2017年5月11日,英伟达正式发布了全新Volta架构GPU——NVIDIA Tesla V1000,它拥有超过210亿个晶体管,是上代TeslaP1000的1.37倍。它的单精度浮点性能高达15 TFLOPS,双精度浮点7.5 TFLOPS。

基于此前的NVIDIA NVLink架构,英伟达还推出了全新的NVSwitch架构。这名 互联架构的传输速率比PCle交换机高5倍,足以支持更大规模和繁复的数据集运算,让开发者和科学家须要构建更高级的系统。

基于Tesla V1000的升级和全新的NVSwitch架构,英伟达将DGX 2的性能较前一代产品有大幅度提升。

在2016年的GTC上英伟达正式发布DGX 1,它拥有8颗帕斯卡架构GP1000核心的Tesla P1000 GPU,以及7TB的SSD,由两颗16核心的Xeon E5-2698v3以及512GB的DDR4内存驱动。售价为129000美元。2017年9月份,英伟达推出了一款基于Volta架构的DGX 1V,拥有8块Tesla V1000。

而DGX 2应用了最新的NVSwitch架构,通过1有几个NVSwitch支持16块全新的Tesla V1000共享同一的内存空间,总计512 GB HBM2存储,能实现每秒高达2千万次的浮点运算。此外,基于NVSwitch架构的应用,16块GPU须要实现2.4TB/秒的数据传输能力。

DGX 2内含16颗Tesla V1000芯片

“这是全球最大的GPU。”黄仁勋表示,他还用“美丽、性感”等词语来形容这名 款最新的DGX系列产品。

DGX 2的售价,黄仁勋首先给出的是1000万美元,最后直接减价为39.9万美元,将在今年的第三季度正式开放购买。

面向艺术及设计领域,英伟达还推出了搭载了NVIDIA RTX(实蹉跎时光里里线追踪)技术的NVIDIA Quadro GV1000 GPU。单块GPU拥有32GB内存,须要基于NVLink技术将两块GV1000 GPU并联,从而将内存提升至64GB。在前一周的游戏开发者大会上,英伟达正式推出了NVIDIA RTX技术。

GV1000 GPU基于最新的Volta架构,须要提供每秒7.4万亿次浮点运算的双精度性能,每秒14.10万亿次浮点运算的单精度性能,以及每秒118.10万亿次浮点运算的深度学习性能。

黄仁勋身后的GV1000 GPU

这款产品主要针对传媒娱乐从业者、产品设计师、建筑设计师等专业设计与流媒体专业人员。其中,NVIDIA RTX内置的NVIDIA OpitX AI-denoiser须要实现实时的AI降噪去噪。

硬件之外,英伟达还发布了针对软件的更新——TensorRT 4软件。这名 软件可用于优化、验证和部署在超大规模数据中心、嵌入式与汽车GPU平台中经过训练的神经网络。

为了笼络更多的开发者,英伟达与谷歌的工程师将TensorRT集成至谷歌的TensorFlow 1.7中。

自动驾驶—暂停自动驾驶研发

自动驾驶仍在本次GTC的讨论之列

英伟达的自动驾驶平台须要统称为Drive PX系列。或者我觉得 ,Drive PX刚刚 NVIDIA车载AI平台的系列名称。而这名 系列目前主要包括两代产品:因为量产的Drive PX 2平台,以及在2018年初展示的新一代平台Xavier。

不过黄仁勋却在GTC 2018上敲定英伟达将暂停自动驾驶的研发工作,我觉得 还可不能能了 说明啥刚刚能再推进这名 应用应用tcp连接,或者他也表示“不让太多。”

在2018年2月9日对外发布的2018财年第四季度及全年财报中,英伟达有几个提到过与Uber、Aurora媒体商务合作打造自动驾驶汽车,采用的刚刚 开源的NVIDIA Drive人工智能自动驾驶平台。

美国当地时间3月18日晚上,亚利桑那州一名女子被Uber自动驾驶汽车撞伤,前一天不幸身亡。这是全球首例自动驾驶车辆致人死亡的事故,刚刚 Uber敲定将暂停其在美国和加拿大的自动驾驶项目。刚刚 在26日,亚利桑那州州长敲定暂禁Uber在亚利桑那州公路测试自驾车。

黄仁勋在回答媒体关于该案件的提问时表示,英伟达对于这名 意外感到悲伤,或者自动驾驶的研究这名 是还可不能能了 错的,应该从这名 案件中吸取经验,提升自动驾驶的安全性。作为Uber在自动驾驶领域的媒体商务合作方之一,英伟达暂停自动驾驶的研发因为和Uber的自动驾驶汽车撞人致死案有关,但其并还可不能能了 全部放弃自动驾驶项目。

英伟达的DRIVE Constellation仿真系统

英伟达在GTC上推出了针对自动驾驶汽车测试的仿真系统——DRIVE Constellation。

DRIVE Constellation仿真系统是一套使用照片级真实感模拟,基于云的自动驾驶汽车测试系统。它基于有几个不同的服务器,第一台服务器运行的是DRIVE Sim软件,须要模拟自动驾驶汽车的传感器,比如摄像头、激光雷达和雷达等。

DRIVE Sim软件须要通过生成照片级的数据流,从而创建不同的测试环境,比如晴天、暴雨、暴雪等不同的天气情形、日间和夜间等不同的光线情形、急减速运动 或陡坡等不同的路面情形。或者在模拟过程中设置各种危险和突发情形,比如行人有几个劲穿越马路等,以测试自动驾驶汽车的反应能力,以选者其不让对人带来安全威胁。

第二台服务器搭载的是NVIDIA DRIVE Pegasus AI汽车计算平台,运行全部的自动驾驶汽车软件堆栈,并并能处理传感器搜集模拟数据。经过处理的数据会被反馈给传感器,有几个劲进行数据的循环。

从时间来看,英伟达推出的这名 仿真系统和Uber的自动驾驶汽车撞人致死案并无太多关联,不过在长远的未来,它将能有效帮助提升自动驾驶汽车测试的安全性。

新媒体商务合作—与ARM媒体商务合作布局IoT

英伟达还敲定与ARM达成了媒体商务合作,一并为全球数十亿台IoT设备提供深度学习的能力。双方将开源的英伟达深度学习加速器整合到ARM的Project Trillium机器学习平台上。

2018年2月23日,ARM推出了Project Trillium项目,这是一套包括新的深度可扩展处理器的ARM IP组合,那先 产品须要提供增强的机器学习(ML)和神经网络(NN)功能。当前的技术产品主要针对移动设备市场,将让全新的搭载机器学习功能的设备具有先进的计算能力,包括先进的目标检测功能。

在将英伟达深度学习加速器整合到Project Trillium前一天,全球数十亿台的消费电子设备上的IoT芯片将具备机器学习能力。

GTC之外—计算力提升从创新驱动变为需求驱动

提到英伟达和黄仁勋,就不得不提到CPU。在2017年的GTC上,黄仁勋曾声称摩尔定律因为终结,设计人员无法再创发明须要实现更高指令集并行的GPU架构,晶体管数量每年增长1000%,但CPU的性能每年仅增长10%。

在演讲中,黄仁勋还可不能能了 放过任何一次揶揄CPU的因为。不管是更新后的Tesla V1000、DGX 2,还是最新发布的GV1000 GPU,黄仁勋声称“在提供相同的计算力下,它们都比CPU组成的集群要更节能、高效,占用更少的空间。”

“买得太多,省得太多。”因为成了他的口头禅。然而回归到英伟达这名 ,其这名 的高速增长很大一每段是依赖于市场对图形芯片的巨大需求。

在英伟达敲定的2018财年第四季度财报中,我觉得 数据中心业务同比实现了一倍多的增长达到6.06亿美元。但游戏图形芯片业务的营收达17.4亿美元,同比增长29%,占该季度总营收的一半以上。

“加密货币市场的强劲需求超出了亲戚亲戚或多或少人的预期。”英伟达首席财务官科莱特·克雷斯表示,“尽管加密货币对亲戚亲戚或多或少人业务的总体贡献仍难以量化,但亲戚亲戚或多或少人认为,其在营收中所比例高于上一季度。”

从产品这名 来说,GPU目前还可不能能了是不断叠加性能,带来的惊喜还可不能能了 少。以DGX系列为例,内含的GPU芯片从4颗变成了8颗,今年从8颗增长到了16颗,改变的只不过是互联的架构。单颗芯片的算力提升还可不能能了 难,英伟达的“横向发展”刚刚 另辟蹊径。

不过,英特尔的Nervana芯片,谷歌的TPU(目前只在谷歌内部人员使用)对于英伟达来说是潜在的竞争对手。有竞争在,更大的惊喜才有因为会到来。

推荐阅读:

《Nvidia正式发布“Nvidia DGX-2”小型超算:16块Tesla V1000计算卡并联,512GB显存》

《Nvidia正式发布Quadro GV 1000显卡:5120CUDA,32GB显存》

热门

热门标签